

NOAA Technical Memorandum NMFS F/NWR-11

FISH TRANSPORTATION OVERSIGHT TEAM ANNUAL REPORT-FY 1984 transport operations on the snake and columbia rivers

CHARLES H. KOSKI, STEPHEN W. PETTIT, JAMES B. ATHEARN, AND ALEX L. HEINDL

FEBRUARY 1985

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

NOAA Technlcal Memorandum NMFS F/NWR-11

FISH TRANSPORTATION OVERSIGHT TEAM ANNUAL REPORT-FY 1984
TRANSPORT OPERATIONS ON THE SNAKE AND COLUMBIA RIVERS

CHARLES H. KOSKI, ${ }^{1}$ STEPHEN W. PETTIT, ${ }^{2}$
JAMES B. ATHEARN, ${ }^{3}$ and ALEX L. HEINDL ${ }^{4}$
CHARLES H. KOSKI, ${ }^{1}$ STEPHEN W. PETTIT, ${ }^{2}$
JAMES B. ATHEARN, ${ }^{3}$ and ALEX L. HEINDL ${ }^{4}$

FEBRUARY 1985
This TM series is used for documentation and timely communication of preliminary results. interim reports. or

LIBRARY

JUN 102009
Natruitar veuarine \& Atmospheric Administration U.S. Dept. of Commerce

1. ENVIRONMENTAL AND TECHNICAL SERVICES DIVISION, NORTHWEST REGIONAL OFFICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, NATIONAL MARINE FISHERIES SERVICE, 847 NE 19TH AVENUE, SUITE 350, PORTLAND OREGON 97232
2. IDAHO DEPARTMENT OF FISH AND GAME, REGION 2, 1540 WARNER AVENUE, LEWISTON, IDAHO 83501
3. U.S. ARMY CORPS OF ENGINEEAS, WALLA WALLA DISTRICT, CITY COUNTY AIPPORT, BUILDING 624, WALLA WALLA, WASHINGTDN 99362
4. COLUMBIA RIVER INTER-TRIBAL FISH COMMISSION, 2705 EAST BURNSIDE STREET, SUITE 114, PORTLAND, OREGON 97214

U.S. DEPARTMENT OF COMMERCE MALCOLM BALDRIGE, SECRETARY National Oceanic and Atmospheric Administration ANTHONY CALLIO, ACTING ADMINISTRATOR
National Marine Fisheries Service
WILLIAM G. GORDON, ASSISTANT ADMINISTRATOR FOR FISHERIES

Abstract

The authors thank field personnel for supplying and in many cases summarizing data required to write this publication. Summary reports from individual biologists were used extensively. We wish to thank each biologist who participated in the juvenile fish transportation program and those who contributed to this report:

At Lower Granite Dam:

John Ferguson, Jeff Gislason, NPW
Paul Abbott, IDFG,

At Little Goose Dam:

Sarah Willis, NPW
Willie Noll, Gary Findley, ODFW

At McNary Dam:

Brad Eby, NPW
Mark Moblos, WDF

Special thanks go to Nancy Stricker, NMFS, for typing the many drafts of this publication. We also thank R. Z. Smith and Mike Delarm, NMFS, for computer and graphics assistance. We appreciate fisheries agencies', tribes' and NPW's support during the 1984 transport season.

TABLE OF CONTENTS

Summary 1
Introduction 2
River Conditions and Flow Management 6
Equipment 12
Juvenile Outmigration 15
Transport Operations - Lower Granite Dam 1984 19
Modifications. 19
Collection of Juveniles. 21
Facility Operations and Maintenance 31
Fish Condition. 35
Transport/Bypass Operations - Little Goose Dam 1984 40
Modifications 40
Collection of Juveniles. 44
Facility Operations and Maintenance 48
Fish Condition 52
Modifications for 1985 56
Transport/Bypass Operations - McNary Dam 1984 57
Facility Modifications 57
Collection of Juveniles 60
Facility Operations and Maintenance 67
Fish Condition 76
Modifications for 1985 77
Literature Cited 79
Appendix Tables

SUMMARY

The 1984 transport season commenced April 1 and ended on September 28. A total of $11,033,317$ smolts were collected including $2,052,119$ at Lower Granite, 2,737,422 at Little Goose, and 6,243,776 at McNary. Total collection included $1,504,941$ and 445,922 smolts bypassed at McNary and Little Goose, respectively. Bypass operations began the first day of operation and ended on May 2 and May 29 at Little Goose and McNary, respectively.

A total of $9,028,959$ juvenile salmonids were transported to below Bonneville, with Lower Granite accounting for $2,046,020$, Little Goose 2,274,307, and McNary 4,708,632. Barge transport accounted for $7,998,933$ and trucking for $1,030,026$.

Interim modifications at Little Goose Dam prior to the 1984 migration season improved smolt quality and survival and eliminated the gas bubble disease problem experienced in 1983.

Juvenile salmonids were collected and transported from the Snake River at Lower Granite (River Mile (RM) 107.5) and Little Goose (RM 70.3) Dams, and from the Columbia River at McNary Dam (RM 292). The Snake River, a major tributary of the Columbia River, joins at RM 324.3. Collected smolts were transported below Bonneville Dam (RM 146.1) via truck or barge and released into the river. Transported smolts bypassed 4 to 8 dams and 146 to 280 miles of impounded river (Figure 1).

The Fish Transportation Oversight Team (FTOT) continued to manage the transport program and provided coordination between Walla Walla District, Corps of Engineers (NPW), fishery agencies, and tribes. The FTOT is composed of biologists from the National Marine Fisheries Service (NMFS), Idaho Department of Fish and Game (IDFG), Columbia River Inter-Tribal Fish Commission (CRITFC), and NPW. The IDFG member was chairman for the team. Line of authority and responsibilities for transporting salmonids is given in Figure 2.

The FTOT's goal is to maximize survival of Snake and Columbia River salmonids by improving collection, transport, and bypass conditions for juvenile migrants. Responsibilities include providing coordination; biological and program oversight; developing an annual work plan; conducting on-site inspections of collection and transport facilities prior to, during, and after the season; and producing an annual report summarizing transport activities. A meeting is hosted by FTOT each summer for program participants and other interested individuals to discuss current season's operation and recommend program and facility modifications for the following year.

Additional biological oversight is provided by cooperative agreements between NPW and the states of Idaho, Oregon, and Washington. Under these cooperative agreements NPW funds state fishery biologists at each transport project. Idaho's representatives were assigned to Lower Granite, Oregon's to Little Goose, and Washington's to McNary. Work loads were shared by NPW's project biologists and state biologists.

NHヨコO JIJIJHd
Figure 1. LOCATIONS OF FISH COLLECTION FACILITIES, TRANSPORTRTION
ROUTE, AND RELERSE SITE.

Figure 3. A typical traveling screen bypass system

A typical collection/bypass system consists of submersible traveling screens (STS's), orifices, and a flume or pipe transport conduit (Figure 3). Fish are collected after they pass through trash racks and encounter a STS that intercepts and deflects them into a gatewell, away from the turbine. Fish then exit gatewells via 8- or 12 -inch orifices into a transport conduit that carries them to a collection facility or to the tailrace.

This report summarizes 1984 transport operations including numbers of salmonids transported or bypassed by species, overall fish condition, river and flow conditions, and facility and equipment operations.

RIVER CONDITIONS AND FLOW MANAGEMENT

The January - July runoff at The Dalles was 111\%, Grand Coulee 92% and Lower Granite 146% of the 20 -year average. Flows at Lower Granite and McNary dams are compared with the outmigration of yearling and subyearling chinook and steelhead in figures 4 and 5. Flows in the Snake River were above minimums (Figure 6) for juvenile fish migration throughout the spring period.

The fishery agencies and tribes requested that the majority of yearling chinook be passed over the spillway or collected and passed back to the river. This is a continuation of a policy adopted because yearling chinook have not responded as positively to transportation as have steelhead.

Snake River

Annual flows in the Snake River are regulated and adjusted by upstream storage reservoirs, however 65\% of the runoff is uncontrolled. Flows in the Snake River were above minimum throughout the spring period and above optimum the majority of the time (Figure 6). Spill occurred every day from March 31 through July 5 with the exception of no spill on May 11.

Streamflow records have been collected at various sites near Lower Granite Dam since 1917. The annual runoff for 1984, adjusted for upstream storage was 54.7 million acre feet (MAF), 149\% of the 1917-83 average. This

represents the second highest flow in 68 years, exceeded only by the runoff of 1974. ${ }^{1}$ This high runoff provided good downstream migration flows thereby eliminating the need to request a water budget flow from Snake River storage. ${ }^{2}$

Lower Granite flows peaked on May 31 at 247,900 cfs with 49% of the flow spilled and peaked again on June 22 at 213,000 cfs with 41% of the flow spilled. Peaks in fish numbers did not coincide with peaks in flows although flows were well above optimum during fish peaks. Spill ranged from zero on May 11 to 122,000 cfs on May 31.

Columbia River

Columbia River flow measured at The Dalles was the 32 nd highest since monitoring began in 1879. Annual runoff was 154.6 MAF (109\% of the 1879 1983 average) this year. ${ }^{3}$ Annual flows (measured from October through September) were regulated and adjusted for upstream storage.

Minimum flows were exceeded the entire spring season at McNary Dam and optimum flows were exceeded the majority of the time (Figure 7). Flows increased to 367,700 cfs on May 16 with almost 50% of the flow spilled (Appendix Table 8). On May 31 flows peaked at 417,000 cfs with 55% of the flow spilled. Spill ranged between 30 and 55 percent of the total flow through July 6 and was discontinued on July 20 .

[^0]

EQUIPMENT

Transport Vehicles

Present criteria allows holding fish a maximum of two days in a raceway. They are loaded into trucks or barges for transport to below Bonneville Dam. Trucked fish were released at two sites: Dalton Point, approximately 12 miles below Bonneville Dam, and into the juvenile bypass downwell at Bonneville Dam Second Powerhouse. The barge release site was approximately five miles below Bonneville Dam near the Skamania light buoy.

Five fish hauling trucks were used prior to and after the peak outmigration period (Figure 8). Rated capacity is 3500 gallons of water per vehicle and, at the present hauling criterion of 0.5 pounds of fish per gallon of water, a fully loaded truck contained approximately 1,750 pounds of fish. Driving time varied with distance traveled. An average trip to Bonneville from Lower Granite took about 8 hours, from Little Goose $6 \frac{1}{2}$ hours, and from McNary $3 \frac{1}{2}$ hours.

Four fish barges were on line at various times from April 11 through August 13 (Figure 8). These periods correspond to the peak spring and summer migration periods. Two older barges, \#2127 and \#2817, have a capacity of 85,000 gallons of water and inflow of 5,200 gallons per minute (gpm). Two newer barges, \#4382 and \#4394, have a capacity of 100,000 gallons of water and inflow of $10,000 \mathrm{gpm}$. The barge holding criterion is 5 pounds of fish per gpm water inflow. This allows a maximum 26,000 and 50,000 pounds of fish for the two older and two newer barges, respectively.

Water temperatures in the fish trucks are kept within 3 degrees of ambient river temperature at the release site. Chillers are available to cool water if necessary during truck transport. Fish barges normally use a flow-through water supply system providing an ambient river temperature throughout the trip; however, they are also equipped with recirculation systems.

Wet Separators/Distribution Systems

Major preseason modifications at Little Goose Dam included reconditioning orifices, remodeling the fish gallery, and remodeling the smolt collection pipe. The fish separator hopper was reduced in size and new separator bars were installed. A 10 -inch pipe was installed to bypass chinook back to the river. Also, a second sample tank was added to sample bypassed fish.

Major changes at McNary Dam were made to the separator and distribution system prior to the season. The separator was modified for size separation to allow bypass of yearling chinook. In-season adjustments were made to improve separation. The hopper under the separator was reduced in size by raising the floor approximately six inches and sloping it towards the exits. A new flume was installed to move large and small fish separately and the sample counter tank was divided to accommodate separated fish. The barge loading line was modified to improve smolt loading.

Submersible Traveling Screens (STSs)

Screens began operating about April 1 and continued for approximately one month after transportation. Lower Granite pulled all STSs in late August except in gatewell slots 1 A and 1 B . A request was made by the fish agencies and tribes to monitor late summer juvenile fish passage at Lower Granite. Gatewells were sampled during September and observed passage was minimal. At Little Goose all STSs were removed in late August and at McNary removal began on November 1.

Four spare STSs were purchased and located one each at Little Goose and Lower Granite and two at McNary. Video inspections of STSs were conducted periodically at all three collection projects during the season. Specific inspection dates are listed in individual project reports. Annunciation systems were functional at all three projects in 1984 and STS cycling closely followed the FTOT Annual Work Plan. A number of STS problems occurred in 1984 and are listed in project report sections. They were mostly routine but some required considerable attention to correct.

JUVENILE OUTMIGRATION

The transport season began April 1 and ended September 28. Total numbers of juveniles transported in 1984 were $9,028,959$ compared with $7,562,999$ in 1983. Total juvenile collection at all projects was 11,033,317, including $1,504,941$ and 445,922 smolts bypassed at McNary and Little Goose dams, respectively. Table 1 presents numbers of smolts by species, date and transport mode from each project. Table 2 summarizes juvenile fish transported from 1978 through 1984. Table 3 summarizes all juvenile fish transported by mode of transportation from 1978 through 1984.

Estimated numbers of chinook salmon and steelhead smolts arriving at upper Snake River dams with number and percent transported for years 1971 through 1984 is presented in Table 4.

Estimated numbers of yearling chinook arriving at lower Granite Dam in 1984 were $4,600,000$ with 28% being transported compared to $3,900,000$ and 26\% in 1983. Estimated steelhead numbers more than doubled the 1983 estimates with 44% being transported in 1984 compared to 69% in 1983.

Sampling Techniques

A random sample of 100 fish per species was taken daily. Information recorded from the sample included species enumerations and composition, descaling, mortality, weight and mark/recapture information.

Sampling rates were according to the sampling guidelines outlined in the FTOT Annual Work Plan, Appendix 2.

Work shops to present uniform guidelines for determining descaling rates and sampling techniques were conducted prior to the sampling season.

Table 1. 1984 Juvenile Fish Transport Summary and Dates of Operation.

	Trucked	Barged	Total
Lower Granite			
April 1-July 26			
Yearling chinook	97,807	726,657	824,464
Subyearling chinook	37,823	59,102	96,925
Steelhead	39,157	1,074,518	1,113,675
Sockeye	2,713	7,987	10,700
Coho	43	213	256
TOTAL	177,543	1,868,477	2,046,020
Little Goose			
April 5-July 28			
Yearling chinook	104,730	383,769	488,499
Subyearling chinook	73,446	84,150	157,596
Steelhead	55,506	1,562,043	1,617,549
Sockeye	2,133	8,530	10,663
Coho	0	0	0
TOTAL	235,815	2,038,492	2,274,307

McNary
April 16-September 28

Yearling chinook	28,599	263,973	292,572
Subyearling chinook	552,163	$3,357,820$	$3,909,983$
Steelhead	30,194	336,453	366,647
Sockeye	4,243	95,085	99,328
Coho	$\frac{1,469}{40,102}$		
L	616,668	$\frac{38,633}{4,091,964}$	$\frac{4,708,632}{}$

Grand Total
$1,030,026$
$7,998,933$
9,028,959

Table 2. Summary by dam of all juvenile fish transported from 1978 through 1984.

	Lower Granite		Little Goose		McNary

Table 3.--Transport summary of total juvenile fish trucked or barged from Lower Granite, Little Goose, and McNary Dams from 1978 through 1984.

	Trucked	Barged	$\underline{\text { Total }}$
1978	$1,580,724$	$1,478,372$	$3,059,096$
1979	$2,031,212$	$3,036,969$	$5,068,181$
1980	$3,019,232$	$4,835,047$	$7,854,279$
1981	$3,145,980$	$5,162,860$	$8,308,850$
1982	$2,152,901$	$3,936,678$	$6,089,579$
1983	$2,780,487$	$4,782,512$	$7,562,999$
1984	$1,030,026$	$7,998,933$	$9,028,959$

Table 4. Number of yearling chinook salmon and steelhead smolts arriving at the upper dams on the Snake River and the number and percent of the total Snake River outmigration transported below Bonneville Dam 1971-1984 (includes experimental fish marked for transport evaluation).

a Data for years 1971-79 from Smith et al. (1980).
b Number of smolts estimated at upper dam from Sims et al. (1981, 1982, 1983).
c Number of smolts estimated at upper dam from McConnaha (pers. comm.). Little Goose counts were used for estimating upper dam numbers.

Table 5.--Number of yearling chinook, steelhead, and subyearling chinook arriving at McNary Dam with numbers and percent transported below Bonneville Dam 1982-1984 (includes experimental fish marked for transport evaluation).

	Yearling chinook			Steelhead			Subyearling chinook		
	$\begin{gathered} \text { No. at } \\ \text { dam } \\ (1000) \end{gathered}$	No. haul (100	Percent hauled	No. at dam (1000)	```No. hauled (1000)```	Percent hauled	$\begin{gathered} \text { No. at } \\ \text { dam } \\ (1000) \end{gathered}$	```No. hauled (1000)```	Percent hauled
1982 a	3,800	790	21	1,500	354	24			
1983 b	3,700	11	0.3	1,700	55	3	12,300	4,200	34
1984 c	5,100	293	6	1,900	367	19	12,900	3,900	30

a Number of smolts estimated (Sims et al. 1983)
b Number of smolts estimated (Sims pers. comm.)
c Number of smolts estimated (McConnaha pers. comm.)

TRANSPORT OPERATIONS - LOWER GRANITE DAM 1984

MODIFICATIONS

Prior to the 1984 transport season a number of facility modifications were completed in the Corp's continued attempt to improve fingerling collection and reduce handling stress associated with facility and transport operations. The most significant included complete remodeling of the sample and marking building (Photo 1), and installation of a permanent trash boom in the forebay (Photo 2). Remodeling included installation of new, more

Photo 1. Sample and marking room at Lower Granite Dam.

Photo 2. Permanent trash boom in the forebay at Lower Granite Dam.
efficient sorting troughs and plumbing. Additional facility and barge modifications included:

1. The opaque flex hose on the direct-load barge line was replaced with transparent flex hose to allow better monitoring of fish passage.
2. Barge pumps were inspected and overhauled.
3. Bypass gallery lights were relocated to opposite walls.
4. A back-up air compressor for the separator control valves was installed.
5. Flume flush-lines were improved.
6. Supports for the 10 -inch flex hose to the barge were installed.
7. Wing walls were removed from barges 2127 and 2817 to facilitate loading.
8. A flow meter system was installed on barge 2817.
9. A new stainless steel inclined screen and fiberglass grating were installed in the upwell.
10. The pipe threader motors for opening fish release valves were replaced with individually-controlled AC motors and gear boxes on barges 2127 and 2817.

COLLECTION OF JUVENILES

Migration and Collection

Enumerating fall chinook migrants continued to be a problem in 1984. The difficulty of distinguishing fall chinook smolts from sub-yearling spring chinook migrants was discussed fully in the previous FTOT report (Delarm et al. 1984). Project workers at Snake River transport facilities had little confidence in the accuracy of fall chinook identification methods. When transport was terminated at Lower Granite and Little Goose, the estimated number of fall chinook collected exceeded the predicted number of migrants from the Snake River. Faced with this obvious inconsistency and a desire to avoid similar problems in the future, the classification system for chinook
migrants was changed. Chinook juveniles were classified as being either yearling or sub-yearling migrants based on total length. Average sizes at time of release for both fall and spring-summer chinook were compared to established classification guidelines. Chinook collected prior to July 1 that were 110 mm in length and those collected on or after July 1 that were 115 mm were classified as sub-yearlings. Chinook longer than these lengths were considered to be yearlings. Estimates of subyearlings collected were derived by back calculating the percentage below $110 \mathrm{~mm} / 115 \mathrm{~mm}$ from each daily length frequency sample.

For the most part, juveniles experienced excellent migration conditions in the Snake River. Natural runoff at Lower Granite was well above the 20-year average throughout the spring migration period. In fact, 1984 flows were the second highest yet recorded and eliminated the need for a water budget request from upriver storage sites in the Snake River. Peak dates for collection of yearling chinook and steelhead were separated by approximately two weeks (Figure 9). This distinct separation probably resulted from Idaho's continued policy of delaying steelhead releases for two to three weeks. Yearling chinook juveniles peaked on May 2 when 68,780 migrants were collected. Chinook migrants dominated the daily collection until May 7 when steelhead started arriving at the project in greater numbers (Appendix Table 1). An estimated 828,330 yearling chinook and 97,525 subyearlings were collected at Lower Granite during the 1984 transport season. Approximately 80% of the season's total of yearling chinook had been collected by May 16 (Figure 10).

Steelhead smolts were collected throughout the transport season at Lower Granite. Daily collection remained less than 10,000 per day until April 28, but then increased rapidly until steelhead became the predominate species on May 7. Peak collection occurred during a four-day period, May 14 through May 17, when 272,800 smolts were collected (Appendix Table 1). The voluntary spill program for chinook passage reduced steelhead numbers available for collection prior to May 10 when collection was maximized. Approximately 80\% of the steelhead collection occurred by May 25 (Figure 10).

1Nก0ว ヨ＾I1ยากWกววย 1Nヨวษヨd

Estimates of chinook passage needed to trigger maximized steelhead collection had in the past been provided by National Marine Fisheries Service workers (Sims et.al.), but their responsibility terminated with the 1983 season. Some confusion occurred in 1984 concerning who was responsible to provide the 80% spring chinook passage estimate. Analysts at the WBC provided the estimate. FTOT recommends that the $W B C$ continue to provide passage estimates needed to trigger maximized collection. It is important for overall steelhead survival that they receive maximum benefits provided by transport, and this requires a timely analysis of yearling chinook passage data.

During 1984, approximately 11,152 sockeye salmon juveniles were collected at Lower Granite (Appendix Table 1) compared to 5,354 in 1983. In late June, many fish identified as sockeye may have been kokanee flushed from Dworshak Reservoir. The increase in sockeye migrants probably resulted from a release of 630,800 fry into Stanley Lake (upper Salmon River) between June 21 and 23, 1983. Juvenile sockeye spend a year in the lake prior to migrating. The 1982 release at Stanley Lake was only 260,400.

Coho migrants were somewhat more numerous in 1984 than the previous year. Coho juveniles arrived at Lower Granite between the dates of May 21 and June 25. Estimated total collection was 256 smolts (Appendix Table 1).

Workers counted 3,168 steelhead kelts across the juvenile separator. These individuals were returned to the tailrace. Most observed during 1984 appeared to be smaller, 1-salt hatchery fish and probably were outplanted adults surplus to Pahsimeroi Hatchery operations. Some of the smallest kelts, usually less than 23 inches, were able to pass through the separator bars and were ultimately transported.

Total collection was below last year's estimated total at Lower Granite, which was unexpected since both yearling chinook and steelhead hatchery releases from the Snake River drainage in 1984 were considerably greater (61\%) than 1983. Since flow and spill patterns were not exceptionally different for the two years, causes of the reduced collection would appear to be related to fish behavior. The permanent trash boom installed prior to the start of the
transport season may have deflected juveniles away from the powerhouse and over the spillway. The trash boom may have also affected the vertical distribution of migrants entering the intakes, however, preliminary evidence gathered by NMFS workers during 1984 indicates that vertical distribution was near normal (Krcma, personal communication). The boom deflection theory gains further support from the fact that Little Goose consistently collected greater numbers of migrants throughout the season than did Lower Granite.

Late Season Sampling

After the Lower Granite facility was dewatered and closed down for the 1984 season, the project undertook a late-season, gatewell sampling program at the request of the Columbia Basin Fish and Wildlife Council (CBFWC) and CRITFC. Also, at their request, FTOT agreed to arrange scheduling and oversee the sampling program. Project personnel began sampling juveniles from two slots (A and B) at Unit-1 on August 29, and continued until September 28. When possible, the gatewells were sampled three times weekly during the fourweek period. An FTOT representative was present at all but one of the sample dates.

Sample protocol involved dropping the gatewell dipnet two or three times in each slot until no salmonid juveniles appeared in the basket. Workers then transferred the fish to a temporary holding tank and counted and measured those salmonids collected and recovered marked juveniles. After sampling the fish were released into the tailrace. The number of juvenile steelhead collected from the two gatewells was very low, and ranged from 0 to 8 fish during the sample period (Table 6). No marked steelhead were collected.

Juvenile chinook numbers ranged from 4 to 111 fish per sample. Average lengths ranged from 143.1 mm to 181.3 mm . Except for several dates late in the sample period, average chinook lengths increased steadily during the four weeks (Table 6). Daily collection averages for chinook, based on numbers collected and duration between gatewell samples, ranged from 2 fish per day to 37 fish per day (Fig. 11). If all operating units had been fully screened, observed numbers could have tripled. (Only Units 1 and 2 were operating

because of low, summer flows). However, it is well documented that screen collection efficiency is not uniform across the power house, and actual numbers may have been somewhat lower for six STSs. Collection estimates, based on fully-screened conditions, of between 6 and 110 chinook migrants per day does not justify operating the juvenile collection and bypass system this late in the year.

Based on coded wire tag (CWT) recoveries, chinook numbers collected during the sample period would have been lower had it not been for an experimental, mid-summer release of spring chinook sub-smolts from Lookinglass Fish Hatchery. A total of 12 adipose-clipped chinook were recovered during the gatewell sampling. All but one fish were from two experimental groups released on July 13 at the upper Grande Ronde facility. This mid-summer release was experimental and is not expected to become a regularly-scheduled management operation (Dennis McClary, personal communication). The remaining marked fish was a fall chinook migrant from Hagerman National Fish Hatchery released at the Grande Ronde/Snake River confluence on June 16.

Table 6. Date, gatewell, and numbers of chinook and steelhead collected during 1984 post-season juvenile sampling at Lower Granite Dam. Average lengths of juvenile chinook collected are also included.

Date	Gatewell 1-A		Gatewell 1-B		Chinook	Totals	
	Chinook	Steelhead	Chinook	Steelhead	Lengths mm	Chinook	Steelhead
8/29	6	0	11	1	143.1	17	1
8/31	3	0	1	2	154.5	4	2
9/4	6	1	7	1	160.8	13	2
9/5	5	0	6	0	166.2	11	0
9/7	6	3	27	2	167.9	33	5
9/11	36	2	51	2	169.6	87	4
9/14	16	0	54	0	172.8	70	0
9/17	43	0	68	3	178.7	111	3
9/19	15	0	40	1	180.4	55	1
9/21	10	0	26	1	172.2	36	1
9/24	13	0	35	0	176.4	48	0
9/26	5	1	10	0	181.3	15	1
9/28	13	1	31	0	178.6	44	1

Transportation Summary

Approximately 2.05 million juveniles were collected during the transport season (Appendix Table 1). An estimated 1,868,477 (91.3 percent) migrants were barged while 177,543 (8.7 percent) were trucked (8.7 percent) for a total $2,046,020$ (Table 1). Daily truck and barge totals are listed in Appendix Tables 2 and 3. Marked fish used for research were included in transport totals. Transport evaluation research accounted for 46,173 and 33,529 marked juvenile chinook and steelhead. Both groups were fin clipped, freeze branded,
and coded wire tagged. During 1984, yearling chinook accounted for 40.4 percent of the total collection and steelhead an estimated 54.3 percent. Subyearling chinook accounted for 4.8% of the total collected. Because juvenile collection efficiencies for Lower Granite were difficult to estimate in 1984, that portion of the total outmigration collected and transported could not be determined using previous methods (Sims, et al.). For this reason an estimate of the Snake River outmigration was based on flow/collection efficiency relationships developed for Lower Granite but applied to Little Goose. Using 1984 estimates provided by the WBC, portions of the estimated total Snake River outmigration transported from Lower Granite Dam were 28 and 44 percent for chinook and steelhead, respectively (Table 4). These estimates are not collection efficiencies, but rather estimates based on WBC calculations of the numbers of juveniles arriving at Lower Granite. The estimates indicate that 4.6 million yearling chinook, and 6.2 million steelhead reached the project (Chip McConnaha, personal communication).

Transport operations were modified slightly in 1984 to provide increased barge transport for juveniles. The first barge arrived on April 10 and left with fish on the following day. Truck transport began on April 1 and continued until barges arrived. Barging continued through June 15. A total of four tugs were used to transport fish barges, with three additional tugs coming on line on April 21, May 4, and May 14. Trucking resumed on June 16 and terminated on July 26. Approximately 27,000 juveniles were transported during the initial trucking phase, which accounted for 2.8 percent of the total yearling chinook and 0.16 percent of steelhead transported. The early trucking phase accounted for only 1.3 percent of the entire population transported from Lower Granite. As in previous years, barges transported the bulk of the run, accounting for $1,868,477$ juveniles (91.3\%). Approximately 88.1 percent of the yearling chinook, 96.5 percent of the steelhead, and 61.0 percent of the subyearling chinook were barged. After the peak migration period, trucks were brought back on line for an additional eight weeks. During the late trucking phase, 150,536 juveniles were hauled (7.4 percent). Approximately 49.9 percent were yearling chinook, 23.6 percent subyearling chinook, and 24.8 percent steelhead. These numbers accounted for 9.1, 36.7
and 3.4 percent of the season's totals for yearling chinook, subyearling chinook, and steelhead, respectively.

FACILITY OPERATIONS AND MAINTENANCE

Debris/Trash Racks

The temporary "slick-bar" log boom used in 1983 was replaced by a permanent trash boom prior to the 1984 season. The new boom extended approximately 750 meters upstream from the powerhouse, to the south shoreline near Offield boat launch (Photo 2). It is constructed of wooden platforms arranged in linked segments. A rigid wooden, debris curtain extends vertically 1.2 meters on the leading edge. The boom is kept aligned by a series of buoys permanently anchored to the bottom of the forebay. The new boom greatly reduced the accumulation of floating debris in front of the powerhouse. In turn, the amount of trash in the gatewells and separator was the lowest in the project's history.

Prior to the 1984 transport season, all trash was dipped from gatewells and intake trash racks were raked to reduce juvenile descaling. Because debris was kept away from the powerhouse, the necessity to rake intake trash racks during the season was minimal and was only carried out twice (Unit 1 , April 27 and Unit 6, April 30). The juvenile separator was dewatered on three occasions (May 3, 17, and 30) for inspection. Debris accumulation was minimal to nonexistent in each instance.

Floating debris brought downstream by spring runoff accumulated in front of the spill gates and reached a maximum of approximately 4.5 surface acres. Project workers began removing the debris on May 24 using a crane and small boat equipped with a log boom. Debris removal was completed by August 9. Minimal amounts passed over the spillway during the season.

Prior to the transport season, Lower Granite's STSs underwent several modifications including:

1. Modified link bar attachments.
2. New, high density plastic link guides.
3. New screen mesh.
4. Perforated plates.
5. New plastic rivet mesh attachments ("Christmas tree" clips), (Photo 3).
6. High density plastic sprockets (Photo 4).

STSs were lowered into position on March 26 and operated in a cycling mode (24 mins. off 4 mins. on) until June 15 . At this time, the average size of chinook migrants had dropped below 115 mm and additional protection was necessary. Screens were then operated on continuous mode through June 29 at which time they were returned to cycling criteria. Two screens, $3-A$ and 4-A, were utilized for guidance efficiency research by NMFS workers during 1984 and remained inoperative except during testing periods for most of the spring migration. Closed circuit video inspections occurred on five occasions during the season (April 5 and 6, April 17 and 18, May 15 and 16, June 20 and 21, and July 17). Inspections occasionally revealed faulty screens, and affected units were either taken out of service until screen repair was completed, or replaced with a screen from a lower priority unit until the repaired screen could be returned to service. A list of STS outages and causes in 1984 is shown in Table 7.

Photo 3. Plastic rivets (Christmas tree clips) used to fasten mesh to link-bars on submersible travelling screens (STSs). From upper left: original design (unused) damaged original, new design.

Photo 4. High density plastic sprockets being installed on STSs at all projects.

Table 7. Dates, unit affected, and submerged traveling screen malfunctions encountered at Lower Granite during 1984.

Date	Unit	Problem
4/5	3B	Mesh splice required repair ${ }^{\text {a }}$
4/6	$\begin{gathered} 1 \mathrm{~B}, 1 \mathrm{C}, 2 \mathrm{~A}, 2 \mathrm{~B} \\ 2 \mathrm{C}, 5 \mathrm{~A}, 5 \mathrm{~B} \end{gathered}$	Mesh splice required repair ${ }^{a}$
5/14	2C	Drive chain loose
5/15	2B	Splice repair and link bar
5/15	5A	Broken splice
5/16	1A	Broken splice
5/19	1B	Torn mesh
5/21	2B	Broken splice
6/19	1A	Torn mesh and missing link bar ${ }^{\text {a }}$
6/19	1B	Torn mesh
6/20	2 A	Torn mesh
6/20	5B	Torn mesh
6/28	4B	Locked rotor
6/28	5C	Tripped circuit breaker
6/28	6 A	High motor current + loose link bar

a"Christmas tree clip" replacement

A problem with mesh attachment occurred on the majority of screens that were retrofitted with the plastic rivets ("Christmas tree clips") prior to the 1984 season. Project maintenance crews at Lower Granite were alerted to the potential problem after loose STS mesh was discovered on April 2 at Little Goose. Lower Granite pulled screen 3-B on April 5, and found that many plastic rivets had failed, allowing the screen mesh to pull loose from the link bars. A decision was made to pull the remainder of the modified screens
and replace the plastic rivets along splices with the original nylon strips anchored by metal screws.

Wet Separator and Distribution System

The juvenile wet separator operated smoothly during the entire transport season. The inclined screen located in the separator's upwell was replaced prior to the 1984 season. New stainless steel mesh and fiberglass grating was installed by project personnel. Accumulation of debris in the separator's hopper, which had plagued the system in the past, was effectively eliminated by installation of the permanent log boom. The separator was dewatered briefly on May 3 and 17. It was again dewatered for nine hours on May 30 to allow NMFS workers to install their orifice traps in the bypass gallery. On all occasions the hopper and distribution systems were found clear of debris.

The distribution system was modified during 1983 to enable direct barge loading, but never became fully operational because of problems with the barge dock loading line. The direct loading line was completed prior to the 1984 transport season and operated smoothly throughout the barging phase. Approximately 63 percent of the barged juveniles were direct-loaded in 1984 compared to 31 percent in 1983. The increased percentage of direct-loaded fish resulted in part from rearranging tug schedules and adopting the practice of leaving an empty barge at the fingerling dock to be direct-loaded.

FISH CONDITION

Descaling

Juvenile descaling rates were taken daily at the facility sample tank and from regularly-scheduled gatewell dipping. Daily averages for both chinook and steelhead were kept between April 1 and July 26 . Descaling rates for chinook averaged 3.0 percent and 2.3 percent for steelhead (Table 8). Daily averages ranged from 0.4 to 6.1 percent for juvenile chinook and from 0 to 4.4 percent for steelhead. These rates compared favorably with previous seasonal averages (Table 9), and it would appear that 1984 migrants were,

Table 8. Average percent descaling of juveniles by week at Lower Granite Dam during 1984. Samples were taken from the sample upwell at the fish facility lab for both chinook and steelhead smolts.

Sample period	Percent descaled	
	Chinook	Steelhead
April 1 - April 7	1.9	2.0
April 8 - April 14	3.1	3.1
April 15 - April 21	3.2	1.1
April 22 - April 28	6.1	4.4
April 29 - May 5	3.5	1.9
May 6 - May 12	4.9	1.9
May 13 - May 19	4.4	3.3
May 20 - May 26	3.7	3.3
May 27 - June 2	1.9	3.6
June 3 - June 9	2.6	2.0
June 10 - June 16	4.4	1.9
June 17 - June 23	3.3	2.6
June 24- June 30	3.0	3.0
July 1 - July 7	2.1	3.0
July 8 - July 14	1.4	3.4
July 15 - July 21	0.5	0.0
July 22 - July 26	0.4	0.0
Season Average	3.0	2.3

Table 9. Average seasonal descaling rates for juvenile chinook and steelhead collected and sampled at Lower Granite juvenile facility, 1981-1984.

Year		
	Phinook	Steelhead
1981	15.5	16.8
1982	8.8	10.1
1983	3.0	4.1
1984	3.0	2.3

generally, in excellent condition. Once juvenile steelhead began arriving in large numbers, workers began recording descaling rates for hatchery and wild smolts. Average descaling for juveniles of hatchery origin was 2.6 percent while wild stocks averaged 2.3 percent.

Descaling rates for chinook and steelhead juveniles sampled from powerhouse gatewells were kept between April 13 - July 13. The seasonal average for gatewell sampled chinook was 4.0 percent and 1.4 percent for steelhead (Table 10). Averages ranged from to 0.5-10.7 percent and from 0.0 - 4.5 percent for chinook and steelhead, respectively. Workers did not separate wild from hatchery fish in the steelhead gatewell sample. Gatewell samples taken in 1983 averaged 1.6 percent and 5.6 percent for chinook and steelhead, respectively.

Excellent flow conditions, resulting in reduced travel time, and improved quality of hatchery smolts resulted in high quality juveniles collected at Lower Granite. The new trash boom is credited with effectively eliminating debris from the collection and bypass system that reduced physical injury and descaling.

Table 10. Average rate of descaling for juvenile chinook and steelhead migrants dipped from powerhouse gatewells at Lower Granite during 1984.

Sample dates		Percent descaled	
		Chinook	Steelhead
April 13		3.7	None in sample
April 17		0.5	None in sample
April 26		7.0	None in sample
May 4		5.0	None in sample
May 11		3.5	None in sample
May 18		2.0	None in sample
May 31		3.7	4.5
June 8		None in sample	2.0
June 15		3.8	0.7
July 2		2.9	None in sample
July 6		1.5	1.7
July 13		10.7	0.0
	Season Average	4.0	1.4

Fish Facility and Barge Transport Mortality

Generally, the overall condition of the fish collected in 1984 was excellent, although some BKD symptoms were observed in early arriving chinook. Total mortality at Lower Granite's fish facility for all species was 5,660 , or 0.3 percent of the total collection (Appendix Table 1). This compares with $0.5,0.5$ and 0.3 percent for transport season mortalities in 1983, 1982 and 1981, respectively. Mortality averaged 0.5 percent for all chinook (0.4 for yearlings and 0.7 for subyearling chinook) and 0.1 percent for steelhead. Chinook mortality dropped approximately 40 percent from the previous 4-year average (Table 11).

Table 11. Collection mortality rates at Lower Granite juvenile facility from 1980-84. Yearling chinook mortalities were not figured separately until 1983.

Species	1984	1983	1982	1981	1980
Total Chinook	0.5	0.7	0.8	0.7	0.6
Yearlings	0.4	0.3	$-\ldots-$	$-\ldots-$	$-\ldots-$
Subyearlings	0.7	2.0	$\ldots--$	$\ldots--$	$\ldots-\ldots$
Steelhead	0.1	0.2	0.1	0.1	0.3

Collection mortality totals include those recorded by barge crews during the initial two hours after departure from the juvenile facility. This mortality was 0.4 percent for chinook and less than 0.1 percent for steelhead. Barge mortality for the remainder of the trip was 0.7 percent and 0.1 percent for chinook and steelhead, respectively. Barge mortality of direct-loaded fish is compared with barge mortality of fish held in facility raceways prior to loading (raceway-loaded) in Table 12. Direct comparison between the two mortality rates may be biased in favor of raceway held fish since all injured and moribund juveniles that come across the separator would be recovered from the barge tanks during the direct-loaded periods. In 1984, direct-loaded chinook had a slightly higher mortality rate (0.8 percent) than raceway-loaded fish (0.7 percent). Direct-loaded steelhead had a mortality rate of 0.1 percent, approximately half of the 0.2 percent rate for raceway-loaded steelhead. A beneficial effect of direct loading may be indicated. Direct loading also appeared to reduce barge mortality of both species in 1983.

Table 12. Barge mortality rates (2 hours after departure until release) of direct-loaded and raceway-loaded juveniles during 1984 (22 trips) and 1983 (10 barge trips).

Loading Type	Chinook		Steelhead	
	1984	1983	1984	1983
Direct-load fish	0.8	0.3	0.1	0.1
Raceway-load fish	0.7	0.3	0.2	0.1

TRANSPORT/BYPASS OPERATIONS - LITTLE GOOSE DAM 1984

The 1984 juvenile fish transport season at Little Goose Dam was very successful. Fish were collected in greater numbers and better condition than in previous years. Problems that forced early shutdown in 1983 were apparently corrected with interim modifications completed during the off-season.

MODIFICATIONS

In 1983 a combination of high dissolved gas levels, high mortality rates, and overall poor fish condition forced facility outages and, ultimately, its early closure. Several interim modifications were made to reduce the problems until a new juvenile fish facility is constructed.

Orifice Modifications

Twenty-four of the thirty-six gatewell orifices were modified to reduce descaling and/or eliminate pressure changes (Table 13). In each gatewell of Units 5 and 6, the \#1 orifices (south) had a plate with an 8-inch hole on the gatewell side opening into a 14 -inch conduit. An 8-inch diameter pipe insert was installed in these slots to match the hole in the plate. The \#2 orifice
of Units 5 and 6 gatewells (north) had plates with 8-inch holes and a 12-inch diameter pipe insert. The 8-inch hole plate was replaced with one having a 12 -inch diameter hole. In addition, these 12 orifices, plus all of the \#l orifices on Units 1 through 4 (all 12-inch diameter holes with 12-inch diameter pipe inserts), had the gatewell entrances grouted with underwater putty and the inserts sandblasted and vinyl-painted.

Table 13. Orifice assembly configuration as of April 1, 1984.

Collection Channel Modifications

To reduce descaling potential gas entrainment, and allow the water level to be held higher in the gallery, several modifications were completed. The upper walls and ceiling of the entire collection channel, which had been rough and pitted, were shot-creted to smooth the surface, (Photo 5-6). Because of the higher water level, the overflow weir crest at the north end of the

Photo 5. Collection gallery at 90° turn shows steel baffle plate and rough concrete ceiling at Little Goose Dam.

Photo 6. Collection gallery showing gradual 90° turn and smooth shot crete ceiling at Little Goose Dam.
gallery was raised $3 \frac{1}{2}$ inches. All orifice lights were raised and the electrical supply conduit was mounted above the ceiling.

At the south end of the channel, several modifications were made at the auxiliary water supply intake. The make-up water enters here at a 90-degree angle to the flow of the collection channel. A metal baffle plate, which had an open chamber behind it, had been installed in 1981 to eliminate a sheer-plane effect. This metal baffle was removed, the chamber filled with concrete, and both the inner and outer corners of the 90 -degree bend were rounded. Also, a 4-foot high by 6-foot deep concrete weir that stood at the entrance to the hopper was removed.

Bypass pipe

The 42 -inch bypass pipe was realigned to eliminate three 90 -degree bends. The new pipe has two 27-degree bends and one 35 -degree bend, each on a 105 -foot radius. In an attempt to reduce the water velocity and back water up to a higher level in the hopper and collection channel, a restricting pipe was added. This consisted of 160 feet of straight 28 -inch diameter pipe. The diameter increases back to 42 inches before entering the upwell structure. The entrance to the upwell was shot-creted to provide a smooth and more gradual transition.

Separator

The separator hopper was modified to reduce holding space for fish by one-half. It was hoped that this would reduce exposure time to water with high dissolved gas concentration.

Distribution and Sampling Systems

In 1983, the chinook and other smaller fish were diverted into a raceway and allowed to migrate volitionally out through the barge-loading line. To provide direct bypass to the river from the distribution flume, the
distribution line leading into raceways 1 and 2 was modified. A length of PVC pipe was inserted through the concrete tailrace wall and perpendicular to the heads of the raceways (Photo 7). This pipe then continued down to the water and exited below the barge loading line.

To determine condition and species composition of fish being bypassed, a second sample tank was installed outside the sample building. The same PVC line was used for both tanks, but a rotating lateral Y fitting was installed above the outside tank allowing fish to be diverted into either tank (Photo $8)$.

COLLECTION OF JUVENILES

Migration and Collection

The Little Goose Dam facility was initially watered up on March 28 for a pre-season inspection by FTOT and project biologists. The facility was again watered up on April 2 and all fish were bypassed to the river until that afternoon. At that time, collection of hourly samples began. The first sample fish were examined on April 3 and were found to be in good condition. The facility was put into full operation. Fish remained in good condition throughout the season until the facility was shut down on July 28 and monitoring terminated.

A total of $2,737,422$ juvenile salmonids were collected in 1984. Of these, 786,583 (28.7 percent) were yearling chinook, 243,668 (8.9 percent) were sub-yearling chinook, 1,695,494 (62.0 percent) were steelhead, and 11,677 (0.4 percent) were sockeye (Appendix Table 4).

Numbers of smolts collected in 1984 were higher than previous years. The 1984 total collection of $2,737,422$ smolts represented a 274.9 percent increase over $1983(995,648)$, a 216.3 percent increase over $1982(1,265,503)$, and a 183.7 percent increase over 1981 (1,490,188).

Photo 7. PVC pipe used to bypass fish from the distribution flume direct to the river at Little Goose Dam.

Photo 8. Lateral Y fitting used to sample fish being bypassed to the river.

Daily collection totals at Little Goose were generally higher than at Lower Granite, even after spill had been terminated there. The reason for this is unknown and research will be conducted in 1985 at Lower Granite to determine the cause. The peak daily collection was 101,637 on May 18. This single day total was the highest since 1981 when 238,634 were collected on May 5. The May 18 peak also compares with May 11 in 1983, May 9 in 1982. The progressively later dates for peak collection are similar at Lower Granite and reflect delayed hatchery steelhead releases that were being made to intentionally separate those fish from the earlier migrating chinook.

Yearling chinook daily collection peaked on April 26 at 33,353. Subyearlings peaked on May 7 at 6,881 . Comparison with previous year's chinook counts is not valid because of revisions made in 1984 in chinook identification and reporting procedures (see Lower Granite Migration and Collection). Steelhead daily collection peaked on May 18 at 95,652. This compares with 37,006 on May 18, 1983, 37,619 on May 9, 1982, and 171,817 on May 5, 1981. Total sockeye collection in 1984 of 11,677 was considerably higher than in $1983(3,432)$ and $1982(5,031)$.

Bypass

From initial water-up, until May 12, a portion of the chinook and other small smolts were bypassed to tailrace. At that time, it was determined that over 80 percent of the spring chinook run was past Little Goose and steelhead had predominated the daily collection since May 9. Of 445,922 smolts bypassed, 279,320 (62.6 percent) were yearling chinook; 82,533 (18.5 percent) were subyearling chinook; 77,883 (18.6 percent) were steelhead; and 662 (0.2 percent) were sockeye. When compared to total collection, the percent of each species bypassed was 35.5 percent of the yearling chinook, 33.9 percent of the subyearling chinook, 4.6 percent of the steelhead, and 5.6 percent of the sockeye (Appendix Table 7).

Of 729,562 chinook collected during the bypass period (through May 12), 361,853 (49.6 percent) were returned to the river. Mean length for those bypassed was 117 mm compared with 127 mm for those transported. A total of

591,615 steelhead was collected during the same time with 77,883 (13.2 percent) bypassed and the rest transported. Mean length of the bypassed group was 183 mm and 201 mm for the transport group. Sockeye collection through May 12 totaled 1,593, with 662 (41.5 percent) bypassed.

Based on the above data, separation at Little Goose was considered inadequate. A major reason for this inadequacy was surging of the upwell water across the perforated plate and separator bars that tended to push smaller fish toward the downstream end.

C. Transport Summary

A total of $2,274,307$ smolts was transported in 1984, 235,815 (10.4 percent) by truck and $2,038,492$ (89.6 percent) by barge (Appendix Tables 5 and 6). These numbers were considerably higher than in $1983(868,937), 1982$ $(1,234,110)$, or $1981(1,464,991)$.

The first truck was loaded on April 5 and fish were trucked every other day until April 11 when the first barge arrived. The first three barges were four days apart, and a truck was loaded on April 13 and 17 to avoid holding fish more than 48 hours. Lower Granite was given the extended holding option. Because of Little Goose's questionable operation, holding criteria there were not changed. Barges ran from April 11 to June 15 (Figure 8). At the end of the barge season, trucks hauled fish from Little Goose 10 out of 12 days; in several cases the trucks were loaded to capacity. From June 28 until July 28, trucks ran every other day.

The 1984 collection peak occurred May 16-19. Because of high numbers and large fish size, the possibility of exceeding the Little Goose facility holding capacity was imminent. Therefore, on May 16 , raceways were emptied into an upstream-bound barge. This barge was loaded again on its downstream run the next day, exceeding its loading capacity of a $\frac{1}{2}-p e r-g a l l o n . ~ T h e ~ f T O T ~$ coordinated approval to load $3 / 4$ pound-per-gallon for this trip if necessary and two compartments were loaded to this increased limit.

Repositioning of the "Operation Fish Run" signs on the new barges and the wall modifications on the older barges helped the loading process at Little Goose during higher tailwater. However, there were still difficulties loading certain barge compartments at Little Goose. In addition, spill created the same hazardous conditions for equipment and personnel as in the past.

FACILITY OPERATIONS AND MAINTENANCE

Debris and Trash Racks

Debris problems at Little Goose in 1984 were not much different than in the past. Gatewell dipping for trash was a daily operation throughout most of the season. Trashracks were raked on three occasions, May 25, June 6 and 7, and June 27. No debris was found during the May raking, although a large amount was removed during June. Gatewell drawdown was never out of criteria in 1984.

Because of the higher gallery water level in 1984 , project staff was unable to detect an orifice blockage unless it was seriously plugged. In past years, orifices in Units 1 and 2 were at least partially out of water for visual inspection. These two orifices are most susceptible to plugging by debris.

Debris did not accumulate in the separator hopper to the extent as in past years, and therefore the dump gates were rarely used. The electronic counter tunnels were inspected frequently and cleaned when debris was noted. The perforated plate over the water eliminator valves in the distribution flume required frequent cleaning because of trash accumulation (twigs, grasses, etc).

Raceway cleaning, prior to loading, was accomplished with the same method as in previous years (Delarm et al. 1984). A new stronger debris flap was added at the end of the separator.

All STSs were installed and operatirg prior to April 1. Screens were cycled (20 mins. off/4 mins. on) except for the period June 16 to July 15 when mean chinook length was less than 115 mm .

There were several problems with STSs during the season (Table 14). On April 2, two screens developed electrical problems and were pulled for repair. At that time problems were also noted with the plastic rivets. The rivets were failing at the point of overlap of two mesh panels. The rivets were replaced at the splices with the original nylon bumper strips, and screws and no further problems occurred. The new spare STS was pulled on May 19 to repair the link bar attachments. Some of the original attachment bolts were too short and pulled out. When the new STS was checked at Lower Granite, it was found to have a similar problem.

Video inspections were conducted twice during the season, April 19-20 and June 18. Screen 1-A was found torn on the first inspection and it was pulled and replaced with the spare. On the second inspection, screen $1-B$ had torn mesh and screen 5-C was pulled and placed in slot 1-B.

Table 14. Submerged traveling screen outages and causes at Little Goose Dam, 1984.

Unit	Out of service			In service			Problem
1C		Apr	1203			1645	Motor ground out.
4C		Apr	1318			1406	Motor problems.
4C		Apr	0915			1324	Hole in screen; splice repaired.
5C		Apr	1015		Apr	1306	splices repaired.
6C		Apr	0818		Apr	1718	Splices repaired.
5B		Apr	1009		Apr	1357	Splices repaired.
6A		Apr	1315			1533	Splices repaired.
6B		Apr	1315			1533	Splices repaired.
1A		Apr	1100			1645	Bad link bar.
6A		Apr	1215		Apr	1545	Motor ground out.
6B		Jun	0909		Jun	1345	Motor ground out.
1A		Jun	1006		Jun	1330	Torn screen.
6B		Jun	0830		Jun	1600	Motor ground out.
1C		Jun	0915		Jun	1551	Electrical problems.
4A		Jun	1039		Jun	1815	Torn screen.
1B		Jun	1257		Jun	1800	Torn screen
5C		Jun	1539		Jun	1550	Pulled to install in 1B.
4A		Jul	1548		Jul	0920	Motor problems.
4B		Jul	0800		Jul	1315	Oil leak.

Interim modifications in the gallery and bypass pipe functioned as intended. The reduced diameter of the 160 feet of 28 -inch pipe backed water up in the hopper and collection channel. However, because of the reduced flow, only 18 orifices could be operated as compared to 27 in the 1983 season. Only fourteen 12-inch diameter orifices could operate; four of the six on Units 5 and 6 were 8 -inch diameter. Because of high water levels, orifices were cycled twice weekly (closed for 10-15 minutes and reopened) in an attempt to float debris and/or tear it loose with initial opening velocity. The system functioned with the make-up water valve on automatic mode and water levels were maintained without problems.

Although dissolved gas concentrations were occasionally high in the forebay (up to 129 percent), the collection system did not seem to appreciably add to those levels as it did in 1983. It appears that elimination of the chamber and metal baffle plate at the entrance of the make-up water in the collection channel prevented the increase in dissolved gas. Dissolved gas concentrations were monitored at five locations: 1) forebay, 2) upwell, 3) raceway, 4) sample tank(s), and 5) tailrace. Stillwells were installed in the upwell and tailrace several weeks into the season and will be placed in the gallery and hopper prior to the 1985 season.

The new pipe configuration did not eliminate, nor even noticeably reduce, surging of water at the upwell structure, as was hoped. Testing prior to initial water-up eliminated a concern about cavitation at the pipe expansion. Cavitation was heard when the water level in the hopper was 4 feet from the top, but seemed to disappear when the level was raised an additional 2 feet. Chunks of the grouting used to smooth pipe joints appeared in the raceways throughout the season, along with paint from the inside of the spiral-weld steel pipe. It is possible that this could be a result of cavitation.

Distribution/Sampling System

The new chinook bypass line, described previously, eliminated the capability to easily load raceway 1. A temporary extension from the raceway 2 and 3 distribution line was built. It was used during the outmigration peak but was not completely satisfactory. A new design is planned for 1985, incorporating the lateral Y system that worked well for the second sample tank. The pipe does not discharge into an ideal location in the tailrace because, during spill conditions, there is turbulence in the area. Until the permanent juvenile fish facility is built, this situation is probably unavoidable.

Raceways

Raceway operation remained the same as in past years, with the exception of limited use of raceway 1. However, if the barge had not been loaded on both up and downstream runs on May 16 and 17 , total raceway capacity would have been exceeded.

FISH CONDITION

In general, fish arriving at Little Goose were in better condition in 1984 than in 1983. However, as reported for Lower Granite, BKD symptoms were observed in a large number of early arriving chinook. Also, some sockeye arriving later in the season were in poor condition, generally bruised and weak. They were probably Kokanee spilled from Dworshak Reservoir.

On several occasions, when gatewells were being dipped, dazed smolts were observed entering the separator. No physical injuries were observed but these fish acted as though they had been stunned. This problem appeared coincidental with gatewell dipping.

Descaling rates among fish collected at Little Goose during 1984 were considerably lower than in previous years. Fish were examined for descaling as they entered the collection system from gatewells and in the daily sample after having passed through the collection/separation system.

Weekly descaling rates for chinook ranged from 2.6 to 13.0 percent with a mean of 7.1 (Table 15). This compares with 19.9 percent in 1983. Steelhead weekly rates ranged from 0.8 to 10.2 percent with a mean of 2.9 , also much lower than the 1983 rate of 7.8. Mean descaling rate for wild steelhead was 1.1 percent compared with 3.5 percent for hatchery steelhead.

Fish were sampled from gatewell slots twice per week between April 4 and July 10. Comparisons of descaling rates for chinook and steelhead in 1984 at 7.3 and 3.9 percent, respectively, were lower than in $1983,10.0$ and 6.5 percent. It can be assumed, since facility descaling rates in 1984 were slightly lower than for gatewells, that intrafacility descaling was minimal. Also, fish appeared to be in better condition in 1984 than in 1983.

Table 15. Descaling rates of chinook and steelhead smolts collected at Little Goose Dam by week, 1984.

Week	Chinook		Steelhead	
	Facility	Gatewell	Facility	Gatewell
4/1-7	3.7	5.9	0.9	6.5 a
4/8-14	3.9	6.7	0.8	2.9a
4/15-21	4.7	7.7	3.2	4.1 a
4/22-28	6.8	4.3	1.7	0.7
4/29-5/5	7.4	7.9	2.4	1.1
5/6-12	9.1	9.5	2.4	4.0
5/13-19	13.0	9.4	2.8	4.4
5/20-26	6.1	8.0	3.3	4.2
5/27-6/2	7.3	3.0	4.4	4.5
6/3-9	10.1	1.9	3.1	3.5
6/10-16	9.8	8.5	3.9	3.7
6/17-23	7.1	7.4	3.6	5.5
6/24-30	6.7	11.8	4.0	2.5
7/1-7	5.0	5.1	4.1	7.5a
7/8-14	3.8	7.4 a	10.2a	8.3a
7/15-21	4.7	---	2.3a	---
7/22-28	2.6	---	0.0a	-
Season Average	7.1	7.3	2.9	3.9

a Indicates a sample of less than 100 fish.

Overall facility mortality for 1984 was 0.7 percent, considerably lower than the 1983 rate of 1.1 and the 1982 rate of 2.1 . Of the total number of mortalities in 1984, 11,479 (62.7 percent) were yearling chinook, 3,645 (19.9 percent) were subyearling chinook, 2,524, (13.8 percent) were steelhead, and 659 (3.6 percent) were sockeye. Both the improved fish condition, as evidenced by lower descaling rates in 1984, and lower mortality rates reflect in part improved conditions in the Little Goose facility as a result of the interim modifications described previously. Reduced mortality and descaling rates were also noted at Lower Granite. Daily chinook mortality at Little Goose ranged from 0.3 to 5.8 percent in 1984 , as compared with a high of 18.8 percent in 1983. Steelhead ranged from 0.0 to 2.0 percent during the 1984 season.

Gas Bubble Symptoms

Despite high amounts of spill in 1984, impacts of dissolved gas supersaturation in fish were minor. The first symptoms were noted on June 23. The incidence peaked on the following day when 10.4 percent of the chinook, were affected. No symptoms were observed after June 27. In addition, the symptoms noted were only isolated bubbles in the fins. No severe accumulation of bubbles or hemorrhaging were observed similar to symptoms that occurred in 1983. This is further evidence that the interim modifications for the 1984 season were apparently successful. However, it must also be noted that the Lower Granite spill patterns were different. Spill was spread throughout the season in 1984 and over all spillbays. In 1983, there was a fairly long period prior to and during the start of the fish transport season that Lower Granite often spilled through less than eight gates.

MODIFICATIONS FOR 1985

Operations

1. In the event of higher fish numbers, as experienced in the 1984 season (5,000 - 10,000 fish per day upon initial water-up, and still over 1,300 fish per day when the facility was shut down on July 28 , because of lack of personnel), extension of the beginning and ending of the season should be considered.
2. Because of relatively high numbers still being collected after the barging season, Little Goose needs a second truck and operator to avoid exceeding criteria and scheduling problems. Otherwise the barging season may need to be extended.
3. A more definitive system for classifying yearling and sub-yearling chinook has been devised and should be used from now on.
4. Because of successful operation with interim modifications, the back-up gatewell dipping plan prepared for 1984 will no longer be necessary.

Facility Modifications

1. The remaining 12 orifices will be modified: the eight with 8-inch diameter hole plates will be converted to 12 -inch diameter and those eight, plus another four, will be sandblasted, vinyl-painted, and the entrances grouted with underwater putty.
2. The separator will be modified to increase efficiency of spring chinook separation by extending the A-bars to $2 / 3$ the length of the separator.
3. Stillwells will be installed in the hopper and gallery to monitor dissolved gas concentrations at those locations.
4. A better system to divert fish to raceway 1 will be devised using a lateral Y design similar to the one for the second sample tank.

$$
\text { TRANSPORT/BYPASS OPERATIONS - MCNARY DAM } 1984
$$

McNary salmon and steelhead outmigrant collection/bypass facilities were scheduled to begin operation on April 1. Construction problems delayed initial water-up until April 9, at which time design flaws (described in facility modifications section) in the new flume system forced shutdown until April 12. Continuous operation then began. All collected fish were bypassed to tailrace until April 14, when fish collected in the separator's B-tank were first held for transport. The facility continued in this mode until April 19, when insufficient separation of spring chinook and steelhead prompted a return to 100 percent bypass. Monitoring throughout the next week indicated that adequate separation, as outlined in the Detailed Fishery Operating Plan (Anon. 1984), was being achieved, and collection for transport resumed April 27.

On May 29, when subyearling salmon became predominant, bypass ceased and all collected fish were held for transport. Collection continued until September 28, when the outmigration was deemed complete and the 1984 transport season ended.

FACILITY MODIFICATIONS

Major changes occurred at McNary in 1984. A size-separator, designed to allow bypass of spring chinook to the ice-trash sluiceway while retaining steelhead for transport, was constructed and placed in operation. To accomplish separation by size, the existing separator was divided at center into two tanks, A and B, by a wall perpendicular to direction of water flow. A set of round bars was installed in each tank just below intended water surface level and parallel to flow direction. Spacing between bars at the surface of A-tank (bypass side) was . 75 inches, wide enough for spring chinook to sound between but presumably too narrow for the larger steelhead to pass through. These fish were expected to swim or be swept by water entering the
separator across the divider wall to B-tank (transport side) and there sound. Space between B-tank bars was 1.25 inches.

An unsuccessful attempt was made to increase attraction flows emanating from the separator's attraction bars (located just below the separator bars) by diverting water there from the auxiliary supply line. The effort was abandoned because it reduced water in the fish sample counter tanks to unacceptably low levels.

To inhibit accumulation of large numbers of fish and/or amounts of debris, the separator floor was raised about six inches and angled toward the exits.

Separator redesign required construction of an additional flume network to permit bypass of yearling chinook exiting A-tank (Photo 9-10). An hydraulically operated gate, installed a short distance below the flume's origin at the A-tank exit, facilitated diversion and sampling of fish collected in that side of the separator. During periods when separation into bypass and transport groups was not desired, e.g. after 80 percent of yearling chinook outmigration had passed McNary, the divider wall was removed and all fish were diverted through the B-tank exit.

Because of space limitations the flume is narrow and has some sharp turns. This caused water to overflow at three points, which jeopardized fish and forced system shutdown from April 9 to 12 for repair. Additional modifications included placement of a flume cover at one location, redesign of some wall configurations, and reduction of the A and B tank exit-orifices from 6×12 to 6×9 inches.

The fish sample-counter tank was partitioned in 1984 to prevent mixing Aand B-tank population samples, routinely collected as per sampling guidelines (Anon. 1984a). Each compartment was supplied by separate water inflow lines and equipped with two tunnel counters for fish enumeration. Because of the center wall, water flowed directly at the tunnel counters, forcing substantial numbers of air bubbles through them and causing inflated sample counts. This

Photo 9. Redesigned bypass flume (foreground) at McNary Dam.

Photo 10. Bypass flume exiting into downwell to tailrace at McNary Dam.
problem was alleviated by raising the tank water level to that of the inflow, which reduced inflow velocity and allowed bubbles to dissipate ahead of the counters. Because drain capacity in the fish sample holding tank was subsequently found to be insufficient to handle inflow through four counters, two were blocked off. As a result, there was occasional debris accumulation in the remaining two counter tunnels, which may have injured fish passing through them.

The six-inch-diameter barge loading line was modified to include a ten-inch-diameter fiberglass header pipe with a smooth inner surface (Photo 11). Instead of sharp bends, the new header pipe has sweeping 45-degree angles to reduce shear forces and incidence of debris buildup.

Material shortãges prevented replacement of any additional orifice Ts in 1984, and no further alteration or major maintenance of the bypass flume or pipe was undertaken. Routine system maintenance occurred prior to onset of the operation season.

COLLECTION OF JUVENILES

Migration and Collection

Outmigrants totaling $6,243,776$ were collected at McNary in 1984 (Table 1). Barges hauled 4,091,964, and trucks carried another 616,668 to release points below Bonneville Dam. Yearling chinook collection increased 75 percent over 1983 levels to $1,261,187$, while subyearling chinook numbers dropped 6.6 percent to $4,098,004$. Steelhead increased nearly 45 percent to 610,511 ; Coho collection dipped 5.2 percent to 82,144 ; sockeye plummeted more than 27 percent to 191,930 .

Peak passage of yearling chinook $(58,968)$, steelhead $(31,413)$, and sockeye $(16,189)$ simultaneously occurred on May 7. Day of peak subyearling chinook passage $(254,928)$ was July 15 (Appendix Table 8). On July $16,386,861$

Photo 11. Fiberglass header pipe for the barge loading 1ine at McNary Dam.
smolts were barged from McNary, the largest daily number leaving there in 1984 (Appendix Table 10).

Between April 12 and May 29, when transport of all collected fish began, 1,504,941 smolts were bypassed (Table 16); 62,676 were trucked (Appendix Table 9); and 560,823 were barged (Appendix Table 10).

Table 16. Numbers of fish bypassed through the McNary fingerling facility during April and May 1984.

Month	$\frac{\text { Yearling }}{\text { chinook }}$	$\frac{\text { Subyearling }}{\text { chinook }}$		Steelhead	Coho		Sockeye	
Total								
April	204,993	2,972		71,762		70	10,251	290,048
May	$\underline{762,700}$	$\underline{156,429}$	$\underline{172,817}$		40,680	82,267	$1,214,893$	
Total	967,693	159,401	244,579		40,750	92,518	$1,504,941$	

Barging operations were extended in 1984, beginning April 11 and continuing from McNary until August 13. Throughout this time trucks ran as necessary, hauling fish excess to barge capacity. Beginning June 16 at McNary, a barge was scheduled to leave every other day; and a second barge was on standby for peaks in daily collection. The standby barge made three trips, two between July 15 and 19 and the last on August 4.

Outmigrant Numbers

Juvenile fish counting at McNary began April 13 and extended through September 28. Yearling chinook, typically springs and Snake River summers were predominant early in the season. By May 22 , approximately 80 percent of these had passed McNary and by June 1 more than 95 percent had passed (Figure 12). Chinook yearlings counted at the project in 1984 totalled 1,261,187. Of this number, 263,973 (20.9 percent) were transported by barge to below

Bonneville and 28,599 (2.3 percent) were trucked downriver. The remainder were bypassed to tailrace. The increase in yearling chinook passage at McNary probably resulted from intensified efforts to bypass these fish at Lower Granite and Little Goose, coupled with expanded hatchery releases, up 50 percent from 1983 levels (WBC 1984).

Subyearling chinook, typically falls and mid-Columbia summers, ${ }^{4}$ became predominant in late May and nearly swamped the facility on July 15 , when the count was just under 255,000. Of the total 4,098,004 collected, 3,357,820 (81.9 percent) were barged and 552,163 (13.5 percent) were trucked. Subyearling chinook were collected at McNary throughout the transport season (Figure 12). Eighty percent of the run had passed the project by August 9. An estimated 95 percent had moved through by the third week in August.

The large number of steelhead $(610,511)$ passing McNary in 1984 was probably a reflection of increased hatchery releases. Mid-Columbia hatchery releases were up about 20 percent over 1983 levels; those in the Snake River climbed over 77 percent (WBC 1984). Steelhead were already plentiful when the collection season began on April 12. By late May, 80 percent of the outmigration reaching McNary had passed (Figure 12).

Coho collected at McNary numbered 82,144 in 1984 (Appendix Table 8). Barges hauled 38,633 (47.0 percent) downriver, while trucks carried 1,469 (1.8 percent). Coho first became readily noticeable about mid-May, after which the run rose quickly to an 80 percent passage level on May 30 . By mid-June coho passage was virtually complete.

Sockeye entering the collection system numbered 191,930, down noticeably from the 1983 level of 224,494 . Sockeye first arrived at McNary in
${ }^{4}$ In 1984, at least two releases of subyearling spring chinook were made in Idaho -- 300,000 "culls" from IDFG's Rapid River Hatchery, and 400,000 from the USFWS Hagerman facility -- as part of experimentation by Idaho Cooperative Fishery Research Unit.
appreciable numbers in late April, and by late May 80 percent of the run had passed (Figure 12). Some 95,085 (49.7 percent) sockeye were barged downriver; only 4,243 (2.2 percent) were trucked.

Facility Operation and In-Season Adjustment

Initial attempts at separation did not meet criteria set forth in the DFOP (Anon. 1984), and between April 19 to 27 all fish were bypassed. The decision to bypass was made because yearling chinook comprised 48.6 percent of B-tank fish from April 13 to 19. On a daily basis, the yearling chinook transport guidelines of 10 percent or less was met only once, on April 16, during initial operations.

Suspension of transport from April 19 to 27 allowed time for fine tuning of operational procedures. Inflow to the separator was reduced by increasing pinch valve pressure from 9 to 11 pounds. This curbed water surface velocities that could sweep smaller fish (e.g. yearling chinook) over A-tank into $B-t a n k$ before they could sound.

To abate turbulence caused by separator inflow across A-tank, the lip at the inflow ramp base was curved by attaching a section of plastic pipe parallel to its edge. This broke the straight, downward plunge of inflow water and smoothed the flow. Further, a $1 / 8$-inch thick rubber flap was suspended across the middle of A-tank, the flap's lower edge hanging just below water surface (Photo 12). Fish too large to pass between separator bars in A-tank could easily swim under the flap and enter B-tank. These modifications, coupled with experience gained by project personnel in maintaining proper water level in the separator, increased separation efficiency at the facility.

Between April 22 and 27, 33.9 percent of the fish collected in B-tank were yearling chinook. Because this amounted to less than 10 percent of total yearling chinook migrating past McNary during that period (including those passed with spill) separation criteria were met and transport resumed. Separation efficiency was best on May 4 when 87.6 percent of yearling chinook

Photo 12. Rubber flap suspended across A-tank of separator at McNary Dam.
collected entered A-tank and only 3.9 percent of all yearling chinook encountering the project were transported. From April 20 to May 29, fully 75.5 percent of collected yearling chinook were bypassed.

Separation was considerably less effective for steelhead than for yearling chinook. Only 51.9 percent of the steelhead collected between April 12 and May 3 entered B-tank and were thus transported. To increase B-tank steelhead numbers, sections of PVC pipe were affixed to every other A-tank separator bars, reducing the space between them an additional $1 / 8$ inch. The effort appeared moderately successful, increasing steelhead transport to 66.7 percent of the total collected between May 4 and 29.

FACILITY OPERATIONS AND MAINTENANCE

Trash Removal

The trashrack cleaning schedule has been noted in concert with outmigrant descaling. All trash raking in 1984 was achieved through use of the trash knife, as in past years. The new trash rake is being modified and is expected to be usable in 1985.

Forebay trash was cleared twice, first in late February and again in early April. Debris was dipped from gatewell slot $2 B$ on June 26.

Submersible Traveling Screens

Submersible traveling screens were in place in all units by March 29. All operated in cyclic mode (15 mins off/2 mins on) from installation through

April 26. On that date, priority units 4 through 10 began constant operation because of numerous subyearling chinook fry in the system. ${ }^{5}$ After May 4, these screens returned to cyclic operation. Cycling ceased May 29 when subyearling chinook dominated the outmigration. Screens were then run continuously until July 20 when cycling resumed.

Three video inspections of operating STSs occurred in 1984: May 7-24, June 11-22 and August 28 - September 7. Twenty five instances of torn mesh were recorded. All damaged screens were either removed and replaced with spares or pulled, repaired on site, and then returned to service. Five mechanical failures were corrected. Two screens fitted with new plastic rivets (Christmas tree clips) were pulled and inspected after rivet failures were observed at Little Goose and Lower Granite dams. All loose or missing rivets were replaced with the original nylon strips and stainless steel screws.

The Corps initiated a systematic STS overhaul program in 1984 with the intention of fully rebuilding one third of the screens on hand each year. Because this was the first year of the new maintenance plan, two out of three screens had already seen extensive use, and many screen malfunctions were attributed to failures of worn parts. Fewer breakdowns are anticipated in coming years.

Orifice Maintenance

The gallery was inspected daily for blocked orifices. To prevent blockages, the north orifice was cycled by closing it for about 20 minutes every day to allow debris to drift away from its entrance. Initially, one unit per day was cycled, but that number was doubled as fish numbers increased. High descaling rate in mid-May caused a short interlude of cycling

[^1]three units per day. When those rates declined, cycling returned to two units per day, at which pace the entire powerhouse was cycled weekly.

In mid-August, after foul water was suspected in a south orifice pipe, project personnel began regularly flushing them for 24 hour periods as had been done in the past (Mobbs Pers. comm.). Routine flushing, it was believed, would prevent potential water quality problems from developing by providing regular water exchange through the pipe. This procedure occurred in conjunction with cycling to remove debris.

Prior to systematic cycling, two blocked orifices were discovered and four more blockages were found during the remainder of the collection season. Interrupting orifice cycling schedules to accommodate STS video inspections may have contributed to these problems by allowing debris to build up.

Bypass Flume

The flume's fixed screens were inspected twice, on March 24 and July 10. Some corrosion was observed, and affected screens will be replaced before the 1985 season.

Pinch Valve

As noted previously, pressure in the pinch valve was increased from 9 to 11 psi to reduce separator inflow. The valve was flushed frequently during the season. While no definite debris blocks were found, at least one partial block was indicated when high fish descaling rates coincided with unusual separator inflow patterns.

Separator

Debris in the separator continued to cause problems in 1984, typically accumulating in the southwest corner. Debris removal usually did not require
separator shutdown and was accomplished by pushing the material toward the exit with a steel rod. When heavy debris accumulation and high descaling rates coincided, the separator was closed for inspection and cleaning.

Raceways

Raceway debris was removed as in past years, by sweeping it over the outfall weir with a modified fish crowding screen.

Tables 17 and 18 show descaling data for samples taken from the fingerling collection facility and the gatewell. Gatewells were dipped weekly beginning April 27. After August 16, adult shad in the gatewells precluded further dipping. Their presence during the process was considered harmful to smolts.

Sampling included fork length measurement of all species collected. Data compiled by NMFS personnel for yearling chinook, steelhead, coho, and sockeye are depicted in Figures 13 through 16. Because subyearling chinook migration occurs throughout the collection season, the mean fork length changes considerably through this time (Figure 17).

System Mortality

Because yearling chinook and steelhead were not separated until 1984, collection facility mortalities (Table 19) are not comparable to those seen previously. Sample tank mortalities, however, are comparable (Table 20) and show a decrease in yearling chinook and steelhead losses and an increase in subyearling chinook, coho, and sockeye losses.

The abrupt doubling in collection facility mortality of subyearling chinook, from 0.5 percent in June to 1.0 percent in July, is at least partially attributable to the accidental asphyxiation of 2,962 smolts in raceway 8 on July 19. The incident occurred following failure to increase inflow to the raceway after loading. (All remaining fish from raceway 8 were subsequently loaded into a separate compartment on the next barge and no
Table 17. Fingerling Facility Descaling Rate at McNary Dam, 1984

Month	Yring. ch.		Sub-yrlng. ch.		Steelhead		Coho		Sockeye		Total	
	Sampl	Desc. (\%)	Sample	esc. (\%)	Sampl	Desc. (\%)	Sam	Desc. (\%)	Samp	Desc. (\%)	Samp	desc. (\%)
April	1,479	175(11.8)	0		1,270	39(3.1)	0		287	10(3.5)	3,036	224 (7.4)
May	2,900	376(13.0)	400	10(2.5)	2,892	169(5.8)	640	18(2.8)	1,132	140(12.4)	7,964	713(9.0)
June	200	$24(12.0)$	2,600	$85(3.3)$	200	5(2.5)	136	4.(2.9)	140	19(13.6)	3,276	137(4.2)
July			3,100	96(3.1)							3,100	96(3.1)
August			2,700	36(1.3)							2,700	36(1.3)
September	-		466	8(1.7)			-				$\begin{array}{r}266 \\ \hline\end{array}$	8(1.7)
Totals	4,579	575(12.6)	9,266	235(2.5)	4,362	213 (4.9)	776	22(2.8)	1,559	169(10.8)	20,542	1,214(5.9)

Table 18. Gatewell Descaling Rates at McNary Dam, 1984

Month	Yring. ch.		Sub-yrlng. ch.		Steelhead		Coho		Sockeye		Total	
	Sampled Desc. (\%)		Sampl	sc. (\%)	Sam	Desc. (\%)		Desc. (\%)	Sam	Desc. (\%)	Sam	Desc. (\%)
April	400	40(10.0)	0		121	7 (5.8)	0		48	1(2.1)	569	48(8.4)
May	824	84(10.2)	300	4(1.3)	260	13(5.0)	22	5(22.7)	210	15(7.1)	1,616	121(7.5)
June	30	2(6.7)	500	9(1.8)	58	5(8.6)	15	0	30	5(16.7)	633	21 (3.3)
July			672	18(2.7)							672	18(2.7)
August	-		374	6(1.6)	-		-					(2.7)
Totals	1,254	126(10.0)	1,846	$37(2.0)$	439	25(5.7)	37	5(13.5)	288	21 (7.3)	3,864	214(5.5)

$\stackrel{n}{n}$
$\stackrel{i}{n}$
$\stackrel{\rightharpoonup}{\sim}$
 288 $37 \quad 5(13.5)$ 25(5.7) 439

Figure 13.-- Yearling Chinook Length Frequencies, McNary Dam, 1984.

Figure 14.-- Steelhead Length Frequencies, McNary Dam, 1984.

Figure 15.-- Coho Length Frequencies, McNary Dam, 1984.

Figure 16.-- Sockeye Length Frequencies, McNary Dam, 1984.

Figure 17.-- Sub-Yearling Chinook Mean Length, McNary Dam 1984.
Table 19. Collection System Mortality at McNary Dam, 1984

Month	Yring. ch.	Sub-yrlng. ch.	Steelhead	Coho	Sockeye	Total
	Mort. (\%)					
April	724 (.3)	95 (2.9)	46 (0.1)	$0 \quad 0$	42 (0.3)	907 (.3)
May	2,867 (0.3)	930 (0.4)	766 (0.2)	36 (0.1)	836 (0.6)	5,435 (.3)
June	240 (0.7)	3,607 (0.5)	549 (0.6)	4 (0.1)	247 (0.9)	4,647 (0.5)
July	11 (0.2)	17,756 (1.0)	28 (1.2)	00	$0 \quad 0$	17,795 (1.0)
August	00	12,299 (1.0)	4 (1.4)	00	3 (0.3)	12,306 (1.0)
September	00	882 (0.8)	00	$0 \quad 0$	$0 \quad 0$	882 (0.8)
Totals	3,842 (0.3)	35,569 (0.9)	1,393 (0.2)	40 (0.1)	1,128 (0.6)	41,972 (0.7)

Table 20. Sample Tank Mortality at McNary Dam, 1984

Month	Yring. ch.		Sub-yrling. ch.			Steelhead			Coho			Sockeye			Total	Total	
	Sample	Mort. (\%)	Sampl	Mort.		Sample	Mort.	(\%)	Samp	Mor	t. (\%)	Sample	Mort.	(\%)	Sample	Mort	. (\%)
April	21,847	275 (1.26)	320	5	(1.56)	7,962	14	(0.18)	7	0		1,289	29	(2.25)	31,425	323	(1.03)
May	93,722	695 (0.74)	20,922	106	(0.51)	41,709	114	(0.27)	6,831	23	(0.34)	13,749	383	(2.78)	176,933	1,321	(0.75)
June	3,222	19 (0.59)	41,565	273	(0.66)	8,520	37	(0.43)	1,146	0		2,322	30	(1.29)	56,775	359	(0.63)
July	609	3 (0.49)	130,713	1,798	(1.38)	200	1	(0.50)	30	0		467		0	132,019	1,802	(1.36)
August	65	0	90,164	1,252	(1.39)	25	1	(4.0)	1	0		86	3	(3.49)	90,341	1,256	(1.39)
September	18	0	7,730	84	(1.09)	2	0		0			24		0	7,774	84	(1.08)
Totals	119,483	992(0.83)	291,414	3,518	(1.21)	58,418	167	(0.29)	8,015		(0.29)	17,937	445	(2.48)	495,267	5,145	(1.04)

delayed mortality was observed during transport.) A low water alarm system, scheduled for installation in 1985, should alleviate similar problems in the future.

Research

Research at McNary was reduced in 1984. No fish were marked and mark recovery from upriver releases was the primary research activity. As a result, less than half the number of fish handled in 1983 were handled this year.

Oregon State University researchers completed their work on stress levels associated with subyearling chinook collection and transport. Studies by the U.S. Fish and Wildife Service on fish condition and yearling chinook stress levels continued, as did NMFS research on subyearling chinook guidance and orifice passage.

FISH CONDITION

Descaling

Descaling rates in 1984 were comparable to those of 1983 (Table 21) Yearling chinook and sockeye scale losses were more frequent than in the previous year, while those of steelhead, subyearling chinook and coho were less so. Numbers of descaled yearling chinook began to increase in the facility about April 24. When the April 27 gatewell sample showed similar scale losses, trashrack cleaning was formally requested.

Table 21. Comparison of descaling rates at McNary Dam fish facility, 1983 and 1984.

Species	1983				1984			
	Range			Season	Range			Season
Yrlng. ch.	2.3	-	23.0	11.6	3.0	-	23.0	12.6
Sub-yrlng.								
ch.	0	-	14.0	3.9	0	-	7.0	2.5
Steelhead	0	-	15.0	5.6	0	-	14.0	4.9
Coho	0	-	15.0	4.2	0	-	8.3	2.8
Sockeye	0	-	27.5	9.8	0	-	30.0	10.8

Following the request for trash rack cleaning, high yearling chinook descaling rates continued, affecting at least 20 percent of sampled fish on six occasions. Sockeye descaling rates also began to climb, reaching 30 percent on May 18. Trashracks on all operating units were cleaned between May 17 and May 23. Although descaling was reduced, it remained above 5 percent for yearling chinook and above 10 percent for sockeye until virtually the end of the outmigration. On July 6, an increase in subyearling chinook descaling prompted cleaning of trashracks in units 1 and 2 and slot 4A.

MODIFICATIONS FOR 1985

1. All ongoing and new modification and maintenance programs (e.g. replacement of orifice T, installation of raceway low-water alarms, repair of corroded flume screens, etc.), scheduled for completion by the onset of 1985 transportation/bypass operations, need to be accomplished as planned.
2. McNary needs a second auxiliary water supply line to alleviate water supply and fluctuation problems. Water level fluctuation and associated problems in the sample collection tanks would be reduced, and more water would be available for supplying fish attraction bars in the separator.

Further, as additional holding capacity becomes necessary at McNary, a new water source could supply some if not all of its needs.
3. To reduce surging and turbulence in and across the separator, a water elimination system in the upwell is required. The system could enhance separation by providing a calmer surface in the separator. It also would allow lower pressure settings in the pinch valve, which would reduce the potential for debris blockage and associated descaling.
4. Changes are needed in the separator outfall to facilitate passage of large fish entering the collection system (e.g. steelhead kelts, sturgeon, suckers, and shad). The outfall slope should be increased and the opening from the outfall floor enlarged. Further, the loose rubber flap that pads the outfall floor, and under which fish often become trapped, needs to be permanently fastened in place.
5. Holding and transporting kelts needs to be evaluated. Transport may benefit this segment of the steelhead population just as it does the smolts, therefore, some effort on their behalf should be initiated.

LITERATURE CITED

Alexander, Clyde, U.S. Geological Survey, 847 N.E. 19th Avenue, Suite \#300, Portland, OR 97232, (personal communication 1984).

Anonymous, 1984. The Fish Transportation Oversight Team's Annual Work Plan for Transport Operations at Lower Granite, Little Goose and McNary Dams for Field Year 1984. Unpublished Document

Anonymous, 1984a. Detailed Fishery Operating Plan of the Columbia River Basin Fish \& Wildlife Agencies and Tribes. Bonneville Power Administration. Division of Fish and Wildlife. Portland, Oregon.

Delarm, M.R., L.A. Basham, S.W. Pettit, J.B. Athearn and Lt. J.v. Barker, 1984. Fish Transportation Oversight Team Annual Report - FY 1983, Transport Operations on the Snake and Columbia rivers. NOAA Technical Memorandum NMFS F/NWR5-7:88 p.

Krcma, Richard, National Marine Fisheries, (personal communication, 1984).
McClary, Dennis Oregon Department of Fish and Wildife, (personal communication 1984).

McConnaha, Chip Water Budget Center, (personal communication, 1984).
Mobbs, Mark Washington Department of Fisheries, (personal communication January 1985).

Sims, Carl W., Albert E. Giorgi, Richard C. Johnsen, and Dean A. Brege June 1983. Migrational Characteristics of Juvenile Salmon and Steelhead in the Columbia River Basin - 1982. June 1983. Northwest and Alaska Fisheries Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112. Final report for U.S. Army Corps of Engineers, 35 p. Contracts DACW 57-82-F-0397 and DACW 65-78-C-0051.

Sims, Carl W., Richard C. Johnsen, Dean A. Brege April 1982. Migrational Characteristics of Juvenile Salmon and Steelhead Trout in the Columbia River System - 1981, Vol. 1 Assessment of the 1981 Smolt Migration. Northwest and Alaska Fisheries Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112. Final Report for U.S. Army Corps of Engineers, 16 p. Contracts DACW 68-78C-0051 and DACW 57-81-F-0342.

Sims, Carl W., J.C. Williams, Dean A. Brege 1981. Migrational Characteristics of Juvenile Salmon and Steelhead in the Columbia River Basin and Related Passage Research at John Day Dam, Vol I and II. Northwest and Alaska Fisheries Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, WA 98112. Final Report for U.S. Army Corps of Engineers, 61 p. Contracts DACW 57-80-F-0394 and DACW 68-78-C-0051.

Smith, Jim Ross, Gene M. Mathews, Larry R. Basham, Stephen Achord, and George T. McCabe January 1980. Transport Operations on the Snake and Columbia Rivers, 1979. Northwest and Alaska Fisheries Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard, Seattle, WA 98112. Final Report of Research for U.S. Army Corps of Engineers, 27 p. Contract No. DACW 68-78-C-0051-Operations.

Water Budget Center, 1984. 1984 Annual Report From the Water Budget Managers to the Northwest Power Planning Council and Bonneville Power Administration. Water Budget Center, Portland, Oregon.

[^2]COLLECTION
MORTALITY
NUMBER PERCENT

00

응ㅇㅇ

RIUER FLOW	SPILL	
IN CFS	TOTAL	PERCENT
107,300	19,000	17.71
99,800	0	0.00
100,800	0	0.00
90,000	0	0.00
84,700	0	0.00
78,900	0	0.00
77,300	0	0.00
71,800	0	0.00
69,200	0	0.00
64,700	0	0.00
47,200	0	0.00
58,100	0	0.00
56,300	0	0.00
41,900	0	0.00
53,000	0	0.00
42,700	0	0.00
39,300	0	0.00
39,100	0	0.00
28,800	0	0.00
38,400		

\[

\]

$$
\begin{aligned}
& \text { RIVER FLOW } \\
& \text { IN CFS }
\end{aligned}
$$

 Sockey

.

Yrlg.

が

 ※̃ N

点

$\stackrel{9}{i}$

華

APPENDIX TABLE 2.-- Continued

 00 MMNMNMNM

| $\stackrel{\circ}{\stackrel{\circ}{5}}$ |
| :---: | $\stackrel{c}{4}$

ACCUM. \#'s BARGED
GED

응

合

은
○○○

山 4 응응응ㅇㅇ

00

DAILY TOTAL

STEELHEAD SOCKEYE
\qquad

 -

 $\stackrel{\pi}{2}$

 が

Iowomo moono 00

ACCUM. \#'s TRUCKED

Yr 19
気
No $0^{00} \mathrm{~m}^{\circ} 0000000000 \mathrm{H}$
APPENDIX TABLE 5.-- Continued
DAILY \ddagger 's TRUCKED
DAILY \ddagger 's TRUCKED

Yrlg.

[^3]
岂 NiNが心

$\stackrel{\text { I }}{2}$

APPENDIX TABLE 6.-- Continued
U L U

000000000000000000000000000000000000000

彦 00
$\stackrel{\circ}{c}$

 －

NOI」フヨ770 MORTALITY NUMBER PER

。

SOCKEYE

응ㅇㅇ

 जनलेनलेननそन

	M N N응ㅇㅇ च゙ヲリ000．
」	
$\stackrel{9}{0}$ $\stackrel{\text { a }}{\stackrel{\text { a }}{\circ}}$	```808000 No! N゙ぶ```

RIUER FLOW
IN CFS
응응응응응응응ㅇㅇㅇ

5

accum. $\boldsymbol{z}^{\prime} \mathrm{s}$ TRUCKED

คった

 APPENDIX TABLE 9.-- Continued

든 Yrlg.
ACCUM. A's TRUCKED

Coho

DAILY \#'s TRUCKED

M0 0000000000000000
$\stackrel{9}{亡}$

[^4]

-

[^5]

[^0]: ${ }^{1}$ Alexander, Clyde . U.S. Geological Survey, 847 N.E. 19th Avenue, Suite \#300, Portland, .Oregon 97232 (Pers. commun. 1984)

 21984 Annual Report from the Water Budget managers, Water Budget Center, 2705 East Burnside Street, Suite \#213, Portland, Oregon 97214
 ${ }^{3}$ Alexander, Clyde. U.S. Geological Survey, 847 N.E. 19th Avenue, Suite \#300, Portland, Oregon 97232 (Pers. commun. 1984)

[^1]: ${ }^{5}$ By agency/Corps agreement, screen cycling must end when fish 115 mm or smaller predominate at McNary.

[^2]: 응ㅇㅇㅇ
 N户M品 0 以

[^3]: ご，

[^4]:

[^5]:

